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Abstract
We introduce an extended linear Boltzmann equation governing the distribution
function of charged particles which scatter inelastically with resting heavy
background particles. The appearing collision integral is closely connected to
a simplified description of the electron–phonon interaction in semiconductors.
The particle conservation and the balance equations of momentum and energy
are discussed in the Lorentz gas limit. By applying a multigroup spline
approximation combined with a P1-approximation for the angle dependence
of the distribution function, the Boltzmann equation is reduced to a system
of differential equations. This approach incorporates external forces in a
natural way. The multigroup equations are solved numerically for different
scenarios.

PACS numbers: 02.60.Nm, 51.10.+y, 05.20.Dd

1. Introduction

The Boltzmann equation is an integro-differential equation, which can be solved rigorously
only in simple cases. Therefore, it is necessary to find approximations to obtain at least
numerically solvable equations. One possibility, known as discrete velocity models, is to
allow the particles to attain only a certain set of velocities. However, in these models
it is impossible to handle external forces without further approximations. To compensate
for this disadvantage, we propose a continuous multigroup approach based on the method
of weighted residuals [1] in this work. Indeed, multigroup approaches are known in
the field of transport theory [2] as simple and fruitful ways to treat the speed variable
v. Recently, the standard multigroup method originally devised for neutron transport was
generalized for nonlinear extended Boltzmann equations [3]. This method, however, brings
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in additional unknowns by integrating the derivatives of the distribution function with respect
to velocity, which stem from the force term in the Boltzmann equation. To overcome this
difficulty, a kind of overlapping multigroup approach which allows an exact integration by
parts within each group is developed [4]. This development, however, results in a more
complex structure of the multigroup equations. To obtain a simpler system of multigroup
equations, we interpolate the velocity dependence of the distribution function by a sum
of Legendre polynomials (splines) within each group in this paper. When deriving the
multigroup equations, we can take advantage of the orthogonality relations of Legendre
polynomials.

We apply this multigroup spline method to a linear extended Boltzmann equation which
is derived for the following physical situation. A system of two kinds of charged particles, say
A (massmA) and B (massmB), can interact via inelastic binary collisions. The particles B are
assumed to be much heavier than the other ones (mB � mA) and are at rest for all times. This
is reasonable because after a collision with a light particle A, a particle B stays practically at
rest. These assumptions are known as the Lorentz gas approximation. Moreover, we assume
that it is possible that the light test particles excite the particles B to a higher energy level by
inelastic interaction. We will denote the excited particles by B∗. The whole system should
be embedded in a heat bath which impresses a given constant temperature T. Consequently, it
follows from the Boltzmann distribution for a canonical ensemble that the particle density of
the excited particles B∗ is given by

nB∗ = nB exp

(
−�E
kbT

)
(1)

where �E denotes the energy difference between the ground state and the excited energy
level and kb is the Boltzmann constant. The interaction due to the electric field which is
caused by the charged particles themselves is taken into consideration by means of a force
term within the Boltzmann equation. Hence, the force term of the Boltzmann equation is
constituted by the sum of a ‘real’ external force and the self-consistent field which results from
the Poisson equation. The Poisson equation governs the electric potential due to the charge
distribution of the species A and B. The only interesting elementary processes which enter
in the collision integral are then the inelastic collisions with heavy particles. In other words,
collective long-range interactions are taken into consideration by the self-consistent field,
whereas short-range binary collisions are described by the collision integral. In our model,
only the number of particles is conserved, because the light test particles can exchange energy
and momentum with the background gas. To sum up, the light particles move in a heavy
background gas which is always in thermal equilibrium. This model is closely connected to
the problem of electron transport in semiconductors [5], where the phonons are considered as
a background gas and the electrons of the conduction band are identified with the light test
particles A.

This paper is organized as follows. After this introduction, the extended linear
Boltzmann equation concerning the physical situation mentioned above is presented and
its macroscopic properties are discussed in section 2. The multigroup spline approach is
introduced and discussed in section 3. In view of the numerical simulations, we confine
ourselves to a linear anisotropy approximation for the distribution function, the so-called
P1-approximation. This means that the expansion of the angular dependence of the distribution
function in terms of spherical harmonics is truncated after the first-order term. Due to this
assumption, the validity of our model is restricted to weak external forces. Finally, section 4
illustrates the numerically obtained solutions to the multigroup equations for different physical
scenarios.
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2. Macroscopic properties

The Boltzmann equation for the test particle distribution function f which corresponds to the
physical problem sketched in the introduction reads [6]

∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

= C[f ] (2)

wherem = mA. The inelastic collision integral C[f ] is given by

C[f ] =
∫
S2

dΩ′ (v−)2

v
σde(v−Ω′,Ω)nB∗f (v−Ω′) +

∫
S2

dΩ′ (v+)
2

v
σex(v+Ω′,Ω)nBf (v+Ω)

−
∫
S2

dΩ′ v σex(vΩ,Ω′)nBf (vΩ)−
∫
S2

dΩ′ v σde(vΩ,Ω′)nB∗f (vΩ). (3)

Elastic scattering is not considered here, since inelastic collisions are assumed to be dominant.
The distribution function f (r,v, t) depends on position r, velocity v and time t. We consider
only the Lorentz force

F = e(E + v × B) (4)

due to an electromagnetic field, where e denotes the charge of a test particle, E is the electric
field and B the magnetic induction. The particle density of the heavy, resting particles B
in the ground state (excited state B∗) is denoted by nB (nB∗). We decompose the velocity
vector v = vΩ in its modulus v and angular part Ω. The integration on the right-hand side
of equation (3) extends over the two-dimensional unit sphere S2. Moreover, we introduce the
abbreviations

v± =
√
v2 ± ε2 ε2 = 2�E

m
(5)

because the test particle’s velocity v changes to v± by inelastic collisions and the threshold ε
is related to the energy gap�E between the ground state and excited state of the background
particles. The cross sections σex and σde refer to the excitation and de-excitation processes,
respectively. They are linked by the microreversibility condition

v2σex(vΩ,Ω′) = (v−)2σde(v−Ω′,Ω) v � ε. (6)

Moreover, we define

σex(vΩ,Ω′) = 0 for v < ε (7)

since for v < ε the light particles do not have enough energy to excite a heavy particle.
The physical meaning of the terms in the collision integral can be easily understood.

By virtue of the first two terms, particles with velocity v are gained by upscattering due
to de-excitation processes and by downscattering due to excitation processes. The last two
terms describe the corresponding loss events. For convenience, we introduce the following
abbreviations

f = f (v) f + = f (v+Ω′) f− = f (v−Ω′)

σ = σex(vΩ,Ω′) σ + = σex(v+Ω′,Ω) σ− = σex(v−Ω′,Ω)
(8)

and

a = e

m
E b = e

m
B. (9)

Hence, equation (2) reads

∂f

∂t
+ v · ∂f

∂r
+ (a + v × b) · ∂f

∂v
= C[f ] (10)
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with the collision integral

C[f ] = 1

v

∫
dΩ′ [nBv

2
+σ

+f + + nB∗v2σf − − f
(
nBv

2σ + nB∗v2
+σ

+
)]

(11)

simplified by using the microreversibility condition. For further calculations, we assume
σ(vΩ,Ω′) = σ(v,Ω ·Ω′), which means that the cross section depends only on the initial speed
v and the angle θ = arccos(Ω ·Ω′) between the initial and final velocity of the interaction.

The inelastic collisions drive the test particles towards an equilibrium distribution which
is a solution to the equation

C[f ] = 0. (12)

It can be shown [6] that the equilibrium for our special collision integral is mathematically
exhausted by the class of functions

f (vΩ) = C(v2) exp

(
− mv2

2kbT

)
with C(v2 + ε2) = C(v2). (13)

Choosing C(v2) = const, we obtain the standard Maxwellian

f (vΩ) = n

(
m

2πkbT

) 3
2

exp

(
− mv2

2kbT

)
(14)

where n = ∫
f dv is the particle density of species A. This means that if there is no diffusion(

∂f

∂r
= 0

)
and no external forces are applied, our light particles will be found in a Maxwellian

state at the given background temperature.
Since the distribution function represents the expected number of particles at position r

and velocity v, we can generally find the value of a macroscopic quantityQ(r, t) corresponding
to the velocity-dependent microscopic quantity q(v) by

Q(r, t) =
∫
R3
q(v)f (r,v, t) dv. (15)

In particular, we define the following macroscopic quantities:

• particle density

n(r, t) =
∫
R3

f (r,v, t) dv (16)

• current density

J(r, t) =
∫
R3

vf (r,v, t) dv (17)

• momentum flux per unit mass

{K(r, t)}ij = Kij (r, t) =
∫
R3

vivjf (r,v, t) dv (18)

• energy density per unit mass

K(r, t) =
∫
R3

v2

2
f (r,v, t) dv = 1

2
trKij (19)

• energy flux per unit mass

Q(r, t) =
∫
R3

(
v2

2

)
vf (r,v, t) dv (20)

where tr denotes the trace of a tensor.
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The evolution equations for the macroscopic quantities are obtained by multiplying the
Boltzmann equation with the appropriate velocity moments q(v) and integrating it over the
whole velocity space. Taking q(v) = 1, we obtain the continuity equation

∂n

∂t
+ divJ = 0 (21)

which reflects the important physical statement that the number of particles A is conserved
in our model. When integrating the collision term, it proves convenient to introduce the total
cross section

σ0(v) =
∫
σ(v,Ω · Ω′) dΩ = 2π

∫ 1

−1
σ(v,µ) dµ (22)

with µ = Ω · Ω′ = cos θ as well as the average cosine of the scattering angle

〈µ〉(v) = 2π

σ0

∫ 1

−1
µσ(v,µ) dµ = σ1

σ0
(23)

bearing in mind the useful identity∫
Ωσ(v,Ω · Ω′) dΩ = 2πΩ′

∫ 1

−1
µσ(v,µ) dµ = σ1(v)Ω′. (24)

The analogous quantities for the de-excitation cross section σde are defined in the same way.
The equation of momentum transport is obtained after some algebra by using q(v) = v

as a weight function:

∂J

∂t
+
∂

∂r
· K − na + b × J = nB

∫ ∞

ε

dv v3σ ex
0 (v)[v−〈µex〉(v) − v]

∫
dΩΩf

+ nB∗

∫ ∞

0
dv v3σ de

0 (v)[v+〈µde〉(v)− v]
∫

dΩΩf. (25)

The two terms on the right-hand side of this equation are the rate of change of the current
density due to collisions. This is also obvious from a heuristic point of view. The number of
particles A (with velocity v in dv) which change their velocity by exciting particles B per unit
time is given by

dNex = σ ex
0 (v)nBf (vΩ)v dv. (26)

During this excitation process, the change of the velocity on average reads

�vex = [v−〈µex〉(v)− v]Ω. (27)

For the number of particles A which change their velocity by de-exciting processes, we obtain

dNde = σ de
0 (v)nB∗f (vΩ)v dv (28)

where the variation of the velocity is given by

�vde = (v+〈µde〉(v) − v)Ω. (29)

By multiplying dNex by �vex and dNde by �vde, respectively, and integrating over v, we
finally obtain also the right-hand side of equation (25).

The balance equation for the energy density is established by using the weight function
v2/2. After appropriate manipulations, we find

∂K

∂t
+
∂

∂r
· Q − a · J = �E

m

(
nB∗

∫
dΩ

∫ ∞

0
dv v3σ de

0 f − nB

∫
dΩ

∫ ∞

ε

dv v3σ ex
0 f

)
.

(30)
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The integral over the collision term can be interpreted on physical grounds. The energy
of the light particle changes by −�E due to an excitation process and by +�E if de-
excitation occurs. Thus, by alternatively combining equations (26) and (28), we can also
justify the right-hand side of equation (30). It should be noted that in the balance equations
of momentum and energy the integration of the collision term with respect to v does not
vanish. This means that the test particles A exchange momentum and energy with the
‘heavy’ background gas during their approach to equilibrium. Consequently, the entire
momentum and energy of the particles A are not conserved. It can be shown that for
the Maxwellian distribution (14), the right-hand sides of equations (25) and (30) vanish, as is to
be expected.

3. The multigroup spline approximation

Since it is not possible to solve the Boltzmann equation (10) rigorously, we must introduce
some approximations to find at least a numerical solution. It is useful to absorb the factor v2

in the definition of the distribution function

φ(r, vΩ, t) = v2f (r, vΩ, t). (31)

By using the identity

∂f

∂v
= Ω

∂f

∂v
+

1

v

∂f

∂Ω
(32)

the Boltzmann equation (10) transforms after some algebra into

∂φ

∂t
+ vΩ · ∂φ

∂r
+ a ·

[(
−2

v
φ +

∂φ

∂v

)
Ω +

1

v

∂φ

∂Ω

]
+ (Ω × b) · ∂φ

∂Ω
= C[φ] (33)

and the collision term (11) leads to

C[φ] =
∫

dΩ′
[
nBvσ

+φ+ + nB∗
v3

v2−
σφ− − φ

(
nBvσ + nB∗

v2
+

v
σ +

)]
(34)

where we have used the abbreviations

φ = φ(vΩ) φ+ = φ(v+Ω′) φ− = φ(v−Ω′). (35)

To treat the velocity dependence of the newly defined distribution function φ, we discretize
the velocity space by introducing surfaces of constant energy as boundaries of energy groups.
Since the energy is given by mv2/2, these surfaces are spheres with constant speed v. It
is natural to start with energy zero and define the following spheres based on the excitation
energy�E, 2�E, . . . or by using the speed variable v:

v0 = 0 vν+1 =
√
v2
ν + ε2 (36)

where ε is given by equation (5). The length of the intervals

Iν = [vν−1, vν] ν = 1, . . . , N (37)

is given by

�ν = vν − vν−1 (38)

and the centres of the intervals are

ξν = vν + vν−1

2
. (39)
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Next, we approximate the speed dependence of the distribution function φ between two
neighbouring energy surfaces by splines of order
:

φ(r, vΩ, t) =
N∑
ν=1

φν(r, vΩ, t) =
N∑
ν=1

χIν (v)


∑
λ=0

Pλν (v)φ
λ
ν (r,Ω, t) (40)

where φν(r, vΩ, t) is the restriction of the distribution function φ to the interval Iν . In this
representation we use the characteristic functions

χIν =
{

1 for v ∈ Iν
0 elsewhere.

(41)

The functions

Pλν (v) =
√

2

�ν

Pλ
[

2(v − ξν)

�ν

]
(42)

are modified Legendre polynomials (as usual Pλ denotes the common Legendre polynomials
of order λ) which are defined in this manner to take advantage of the orthogonality relation
within each energy group∫

Iν

P λν P
l
ν dv = 2

�ν

∫ 1

−1
Pλ(xν)P

l(xν)
dv

dxν
dxν = 2δλl

2l + 1
(43)

with

xν = 2(v − ξν)

�ν

. (44)

In this way we introduceN×(
+ 1) unknownsφλν which depend on position r, time t and
angle Ω. Our main objective is now to find enough equations resulting from the Boltzmann
equation to determine these unknowns.

3.1. Continuity conditions

Due to the force term of the Boltzmann equation, the distribution function must at least
be continuously differentiable with respect to v. Moreover, if we demand that φ is
M times continuously differentiable, we have to establish at the velocity knots vν the following
relations:

lim
v→v−

ν

φ(k)ν (vν) = lim
v→v+

ν

φ
(k)

ν+1(vν) (45)

for k = 0, . . . ,M and ν = 1, . . . , N − 1. Based on the definition of φ = v2f (vΩ), the
boundary conditions at the origin read

φ1(0) = 0 φ′
1(0) = 0. (46)

If we choose the number of energy groups N large enough, we can assume at v = vN the
boundary conditions

φ
(k)
N (vN) = 0 (47)

for k = 0, . . . ,M − 2. In terms of the new unknowns φλν , equations (45) read

dk

dvk


∑
λ=0

Pλν (v)φ
λ
ν

∣∣∣∣∣
v=vν

= dk

dvk


∑
λ=0

Pλν+1(v)φ
λ
ν+1

∣∣∣∣∣
v=vν

k = 0, . . . ,M (48)
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which finally lead to the continuity relations(
2

�ν

)k+ 1
2


∑
λ=k

φλνN +
kλ =

(
2

�ν+1

)k+ 1
2


∑
λ=k

φλν+1N−
kλ (49)

for k = 0, . . . ,M and ν = 1, . . . , N − 1 with

N±
kλ = dk

dxk
P λ(x)

∣∣∣∣
x=±1

. (50)

For the boundary conditions, we finally get√
2

�1


∑
λ=0

φλ1N−
0λ = 0 (51a)

(
2

�1

) 3
2


∑
λ=1

φλ1N−
1λ = 0 (51b)

(
2

�N

)k+ 1
2


∑
λ=k

φλNN +
kλ = 0 0 � k � M − 2. (51c)

Thus, we have N × (M + 1) independent equations, (49)–(51c), for the unknowns φλν , if we
demand that φ is M times continuously differentiable and N is the number of speed intervals.

3.2. Multigroup equations

To gain the remaining equations for φλν , we multiply the Boltzmann equation (33) by weight
functions P lν for l = 0, . . . , L and integrate it over the intervals Iν taking into account the
ansatz (40). In this way, we obtain (L + 1)×N moment equations:

2

2l + 1

(
∂φlν(r,Ω, t)

∂t
+ (Ω × b) · ∂φ

l
ν(r,Ω, t)
∂Ω

)
+ Ω ·


∑
λ=0

∂φλν (r,Ω, t)
∂r

Aνλl

− a · Ω

∑
λ=0

φλν (r,Ω, t)
(
2A−1

νλl +A′
νλl − Rνλl

)
+ a ·


∑
λ=0

∂φλν (r,Ω, t)
∂Ω

A−1
νλl

=

∑
λ=0

∫
dΩ′[nB φ

λ
ν+1(r,Ω, t) B

+
νλl (Ω,Ω

′) ζνN

+ nB∗ φλν−1(r,Ω, t) Cνλl(Ω,Ω
′) ζν1

−φλν (r,Ω, t)
(
nB Bνλl(Ω,Ω′) ζν1 + nB∗ C+

νλl(Ω,Ω
′) ζνN

)]
(52)

for ν = 1, . . . , N and l = 0, . . . , L. To conserve the particle number, we have ensured by
ζνN = 1 − δνN that no particles are upscattered to velocities greater than vN or downscattered
from there, whereas ζν1 = 1 − δν1 stems from the physical restrictions of the excitation and
de-excitation processes. Moreover, we have introduced the following abbreviations:

Aνλl =
∫
Iν

vP λν P
l
ν dv A−1

νλl =
∫
Iν

1

v
Pλν P

l
ν dv

A′
νλl =

∫
Iν

P λν
d

dv
P lν dv Rνλl = Pλν (vν)P

l
ν(vν)− Pλν (vν−1)P

l
ν(vν−1)

(53)
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and

B+
νλl =

∫
Iν

P λν+1(v+)P
l
ν(v)vσ

+ dv Cνλl =
∫
Iν

P λν−1(v−)P lν(v)
v3

v2−
σ dv

Bνλl =
∫
Iν

P λν (v)P
l
ν (v)vσ dv C+

νλl =
∫
Iν

P λν (v)P
l
ν (v)

v2
+

v
σ + dv.

(54)

Since we need (
 + 1)×N independent equations, the relation

L +M + 1 = 
 (55)

must be fulfilled. It will turn out that it is sufficient to choose L = 2 in order to ensure that
the resulting system of evolution equations (52) leads to an analogous system of macroscopic
equations derived in section 2.

3.3. The P1-approximation

Equation (52) is still of integro-differential type. To derive a system of differential equations,
we expand the unknownsφλν (r,Ω, t) in terms of spherical harmonics (PN -approximation [7]).

The unit vector Ω = (sin θ cosϕ, sin θ sin ϕ, cos θ) is characterized by the polar angle θ
and the azimuthal angle ϕ. Since the spherical harmonics Ylm(θ, ϕ) represent an orthonormal
and complete set of functions, the unknowns φλν (Ω) can be represented as

φλν (θ, ϕ) =
∞∑
l=0

l∑
m=−l

cνλlmYlm(θ, ϕ) (56)

with the coefficients

cνλlm =
∫ 2π

0

∫ 1

−1
φλν (θ, ϕ)Y

∗
lm(θ, ϕ) d(cos θ) dϕ. (57)

When truncating this expansion at order two, the result can be written in the very convenient
tensorial form

φλν (Ω) = 1

4π

[
nλν(r, t) + 3Ω · jλν (r, t) +

15

2

(
�i�j − 1

3
δij

)
Qνλ
ij (r, t)

]
(58)

with

nλν =
∫
φλν dΩ jλν =

∫
Ωφλν dΩ and Qνλ

ij =
∫ (

�i�j − 1
3δij

)
φλν dΩ.

(59)

Applying a P1-approximation to the moment equations (52) means that we set

φλν (Ω) = 1

4π

(
nλν + 3Ω · jλν

)
(60)

by taking into account

Qνλ
ij =

∫ (
�i�j − 1

3δij
)
φλν dΩ = 0. (61)

This assumption restricts the validity of the equations to weak external fields.
Instead of inserting the approximation (60) into equation (52) and projecting it onto the

basis functions 1 and Ω, we immediately project the moment equations (52) onto 1 and Ω
and refer to equations (60) and (61). This means that we multiply the moment equations by



8682 C Ertler et al

the basis functions and integrate with respect to Ω. First, the projection of equation (52) onto
1 yields

2

2l + 1

∂

∂t
nlν(r, t) +


∑
λ=0

[
Aνλl

∂

∂r
jλν (r, t)− a · jλν (r, t)(A′

νλl − Rνλl)

]

=

∑
λ=0

[
nB ζνN n

λ
ν+1(r, t) β

0+
νλl + nB∗ ζν1 n

λ
ν−1(r, t) γ

0
νλl

− nλν(r, t)
(
nB ζν1 β

0
νλl + nB∗ ζνN γ

0+
νλl

)]
. (62)

If we repeat the procedure with the weight Ω, we obtain

2

2l + 1

(
∂

∂t
j lν(r, t) + b × j lν(r, t)

)
+


∑
λ=0

[
1

3
Aνλl

∂

∂r
nλν(r, t)

− 1

3
anλν(r, t)

(
2A−1

νλl +A′
νλl − Rνλl

)] =

∑
λ=0

[
nB ζνN jλν+1(r, t) β

1+
νλl

+ nB∗ ζν1 jλν−1(r, t) γ
1
νλl − jλν (r, t)

(
nB ζν1 β

0
νλl + nB∗ ζνN γ

0+
νλl

)]
. (63)

In the last equations, we introduced the constants

β0
νλl =

∫
Bνλl dΩ =

∫
Iν

P λν (v)P
l
ν(v) vσ0 dv

β0+
νλl =

∫
B+
νλl dΩ =

∫
Iν

P λν+1(v+)P
l
ν(v) vσ

+
0 dv

(64)

γ 0
νλl =

∫
Cνλl dΩ =

∫
Iν

P λν−1(v−)P lν(v)
v3

v2−
σ0 dv

γ 0+
νλl =

∫
C+
νλl dΩ =

∫
Iν

P λν (v)P
l
ν (v)

v2
+

v
σ +

0 dv

and ∫
ΩB+

νλl dΩ = Ω′
∫
Iν

P λν+1(v+)P
l
νvσ

+
1 dv = Ω′β1+

νλl

(65)∫
ΩCνλl dΩ = Ω′

∫
Iν

P λν−1(v−)P lν
v3

v2−
σ1 dv = Ω′γ 1

νλl .

Substituting the ansatz (60) for φλν in the boundary and continuity conditions (49)–(51c) and
projecting them onto 1 and Ω yields 4N × (M + 1) algebraic conditions for the 4N × (
 + 1)
unknowns nλν, j

λ
ν,x, j

λ
ν,y and jλν,z. By means of these algebraic equations, we can express

4N × (M + 1) unknowns by the remaining 4N × (L + 1) ones (since we have 4N × (
 + 1)
unknowns and 
 = M + L + 1). It appears natural to choose the first 4 × (L + 1) unknowns
nlν, j lν , l = 0, . . . , L of every energy group ν = 1, . . . , N to be independent but other choices
are possible. Thus, we finally get a strongly coupled system of partial differential equations
for the independent unknowns nlν, j lν with l = 0, . . . , L and ν = 1, . . . , N .

3.4. Macroscopic properties

Due to the spline ansatz and the P1-approximation, we cannot expect that the obtained
distribution function fulfils exactly the original Boltzmann equation. However, depending
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on the choice of the weight functions, we can ensure that the correct balance equations for the
macroscopic quantities are obtained.

First we represent the macroscopic quantities, introduced in section 2, in terms of the
unknowns nλν, jλν based on equations (16)–(20), the ansatz (40) and by using equation (59):

n =
∫
f d3v = 2

∑
ν

√
�ν

2
n0
ν (66)

J =
∫

vf d3v = 2
∑
ν

√
�ν

2

(
1

3

�ν

2
j1
ν + ξνj0

ν

)
(67)

{K}ij = Kij =
∫
vivjf d3v = 2

3
δij

∑
ν

√
�ν

2

[
1

5

�2
ν

6
n2
ν +

1

3
ξν�νn

1
ν +

(
�2
ν

12
+ ξ2

ν

)
n0
ν

]
(68)

K = 1

2
trKij =

∑
ν

√
�ν

2

[
1

5

�2
ν

6
n2
ν +

1

3
ξν�νn

1
ν +

(
�2
ν

12
+ ξ2

ν

)
n0
ν

]
(69)

Q =
∫
v2

2
vf d3v =

∑
ν

√
�ν

2

{
1

7

�3
ν

20
j3
ν +

1

5

�2
ν

2
ξνj

2
ν +

1

3

[
3

5

(
�ν

2

)3

+
3

2
ξ2
ν �ν

]
j1
ν

+

(
�2
ν

4
ξν + ξ3

ν

)
j0
ν

}
. (70)

Equation (66) implies that we must multiply equation (62) for l = 0 by
√
�ν/2 and sum

the resulting equations over ν in order to check if the conservation of the particle number is
incorporated in the moment equations (62) and (63). Finally, this calculation leads to

2
∂

∂t

∑
ν

n0
ν

√
�ν

2
+ 2

∂

∂r

∑
ν

√
�ν

2

(
1

3

�ν

2
j1
ν + ξνj0

ν

)
= 0 (71)

which is exactly the continuity equation, bearing in mind equations (66) and (67).
Next, we derive the equation of momentum transport. The structure of equation (25) and

the definition of the current density, equation (67), suggest that we must multiply equation (63)
for l = 0 by ξν

√
�ν/2 and add it to equation (63) for l = 1 multiplied by (�ν/2)3/2 and sum

the resulting equation over all energy groups. In this way we get

2
∂

∂t

∑
ν

√
�ν

2

(
1

3

�ν

2
j1
ν + ξνj0

ν

)
+ b × 2

∑
ν

√
�ν

2

(
1

3

�ν

2
j1
ν + ξνj0

ν

)

+
2

3

∂

∂r

∑
ν

√
�ν

2

[
1

5

�2
ν

6
n2
ν +

1

3
ξν�νn

1
ν +

(
�2
ν

12
+ ξ2

ν

)
n0
ν

]
− 2a

∑
ν

√
�ν

2
n0
ν

= nB

∫ vN

ε

dv vσ ex
0 (v−〈µex〉 − v)

∫
dΩΩφ

+ nB∗

∫ vN−1

0
dv vσ de

0 (v+〈µde〉 − v)

∫
dΩΩφ. (72)

Comparing this result with the original momentum transport equation (25), we see that they
only differ in the upper bounds of the integrals, which is caused by the finite number of energy
groups.

In addition, the balance equation of energy density is hidden in the moment equations.
The definition of the energy density per unit mass (69) implies that we proceed in the following
way:
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2R2

R2

R2

ψ

ϕ

ds

R1

(a) (b)

θ’
θ

r

Figure 1. Geometry used for the calculation of the self-consistent field (a). For R1 � R2 the
neighbourhood of θ ′ = 0 is replaced by a cylinder of height 2R2 (b).

• Taking the moment equations (62) for l = 0, 1, 2 and multiplying them by the following

factors l = 0 :
(�2

ν

12 + ξ2
ν

)
, l = 1 : ξν�ν, l = 2 : �

2
ν

6 ;
• then adding the resulting equations and multiplying them by the common factor 1

2

√
�ν

2
;

• and finally summing over all energy groups.

This results in√
�ν

2

∂

∂t

∑
ν

[
1

5

�2
ν

6
n2
ν +

1

3
ξν�νn

1
ν +

(
�2
ν

12
+ ξ2

ν

)
n0
ν

]
+
∂

∂r
·
∑
ν

√
�ν

2

{
1

7

�3
ν

20
j3
ν +

1

5

�2
ν

2
ξνj

2
ν

+
1

3

[
3

5

(
�ν

2

)3

+
3

2
ξ2
ν �ν

]
j1
ν +

(
�2
ν

4
ξν + ξ3

ν

)
j0
ν

}

− 2a ·
∑
ν

√
�ν

2

(
1

3

�ν

2
j1
ν + ξνj0

ν

)

= − �E

m
nB

∫
dΩ

∫ vN

ε

dv vσ ex
0 φ +

�E

m
nB∗

∫
dΩ

∫ vN

0
dv vσ de

0 φ. (73)

Thus, we have again discovered the balance equation for the energy density (30).
The results reveal that we must at least choose L = 2 to ensure the conservation of the

particle number and a physically correct treatment of the transport of momentum and energy by
our moment equations. By using Legendre polynomials of higher orders, we can also recover
any other macroscopic equation, as e.g. the heat flow equation. Hence, we can improve the
relevance of our physical description which, however, entails an increasingly higher number
of differential equations.

4. Numerical simulations

In the previous section, we deduced a system of evolution equations (62) and (63) for charged
particles diffusing through a host medium of two-level atoms based on a multigroup spline
P1-approximation. To demonstrate the applicability of the underlying method, we consider
the transport within a thin torus with the radii R1 and R2 (figure 1(a)). If we suppose that
R1 � R2, we can approximately assume that the velocity distribution depends only on the
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polar angle θ . We further assume that only tangential electric forces act on the charged test
particles. A finite radiusR2 
= 0 is necessary to avoid singularities of the electric field strength.
Moreover, the tangential electric force is considered to be constant over the cross section of the
torus and given by its actual value at R2 = 0. This means that we deal with a one-dimensional
transport problem in real space, where periodic boundary conditions with respect to the angle
variable θ apply:

φ(θ,v, t) = φ(θ + 2π,v, t). (74)

For all simulations, we assume that the differential excitation cross section is given by

σex =
{

0 for v < ε

1 for v � ε.
(75)

By virtue of microreversibility (6), the cross section of de-excitation reads

σde = 1 +
( ε
v

)2
. (76)

Furthermore, we require that the distribution function is continuously differentiable, which
means that we set M = 1 in our simulations.

4.1. The self-consistent electric field

Since we consider charged test particles, we must take into account the time-dependent self-
consistent electric field Eself(θ, t) due to the Maxwell equation

∇ ·Eself = ρ

ε0
(77)

corresponding to the charge density

ρ(θ, t) = e(nB + nB∗ − n(θ, t)).

The last equation is based on the assumption that the heavy background particles are
positive ions, whereas the test particles are negatively charged and the particle density of
the background particles is spatially homogeneous. Moreover, dynamical electromagnetic
effects are neglected.

Integrating equation (77) yields the tangential component of the electric field at θ = 0:

Eself(0) =
∫

torus

ρ(θ ′) sin ϕ

4πε0r2
dV, (78)

where ε0 denotes the dielectric constant, r is the distance between field point and source point
and ϕ = (π − θ ′)/2 . It should be noted that the integrand is singular for r = 0, which
would result in an infinitely strong electric field in the case of a one-dimensional volume
element dV. However, we avoid this problem by assuming a torus with R2 
= 0. Since we
suppose R1 � R2, we can approximate the torus in the neighbourhood of θ ′ = 0 by a
cylinder of height 2R2 (figure 1(b)). This enables us, after some algebra, to evaluate the
tangential electric field component Ecyl at θ = 0 caused by the charge density within this
cylinder by taking into account the exact distance r between source point and field point in
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equation (78):

Ecyl(0) = R2

2ε0

∫ π
4

− π
4

ρ(ϑ) (sinψ − signψ)
1

cos2 ψ
dψ (79)

with ϑ = R2 tanψ
R1

. To estimate the contribution of the rest of the torus to the tangential electric
field at θ = 0, we approximate the distance r in equation (78) for each volume element
dV = R2

2π ds by r = 2R1 cosϕ, which results in

Erest(0) = − R2
2

8ε0R1

∫ π
2 −δ

− π
2 +δ

ρ(π − 2ϕ) sinϕ

cos2 ϕ
dϕ (80)

where δ = R2
2R1

and ds = 2R1 dϕ. In order to obtain the tangential component of the electric
field at an arbitrary position θ , we simply rotate the coordinate system by this angle θ , which
leads to

Erest(θ) = − R2
2

8ε0R1

∫ π
2 −δ

− π
2 +δ

ρ(π − 2ϕ + θ) sinϕ

cos2 ϕ
dϕ (81)

and

Ecyl(θ) = R2

2ε0

∫ π
4

− π
4

ρ (ϑ + θ)(sinψ − signψ)
1

cos2 ψ
dψ. (82)

Therefore, the whole self-consistent electric field is given by

Eself(θ) = Erest(θ) + Ecyl(θ). (83)

In the numerical simulations the following algorithmic pattern is used. We start with a
given initial distribution function of the test particles and evaluate the corresponding electric
field by means of equations (81)–(83). Then, we solve the group equations (62) and (63) under
the influence of this fixed initial electric field for a short period of time �t . Using the newly
evaluated distribution function, we recalculate the self-consistent electric field and repeat the
whole procedure to approach equilibrium.

4.2. Results of the simulations

It is useful to define natural units. We choose the unit of mass such that the mass of
particle A equals 1. This means, if particles A are assumed to be electrons that mA =
1 � 9.1096 × 10−31 kg. The energy is measured in units of kbT . Considering T = 300 K,
leads to E = 1 � 25.85 meV. The particle density of realistic systems is of order
1021 particles per m3. By setting the unit length l = 1 � 10−7 m, we get n =
1 � 1021 m−3. These definitions are only consistent if we change the unit of time to
t = 1 � 1.48 × 10−12 s. Moreover, we measure the charge in terms of the elementary
charge e = 1 � 1.602 19 × 10−19 A s. The factor for converting the electric field is then
given by E = 1 � 258 512 V m−1. For all simulations, we fix the parameters to L = 2,
N = 10, ε = 1.9 and nB = 3, which is consistent with equation (55) if we choose 
 = 4.

To show how fast equilibrium is approached, we first assume that the particle density
is constant throughout the torus. Figure 2 shows the temporal evolution of a given initial
distribution function. We finally obtain at t = 0.5 the expected Maxwellian as displayed in
figure 3. The number of occurring oscillations of the non-equilibrium distribution function
at t = 0.1 is directly related to the group number. This can be seen by comparing figure 3
with figure 4, where the same relaxation process is shown, however, by using only four
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Figure 2. The relaxation of a given initial distribution function to a Maxwellian. The plot shows
the distribution φ versus speed v and time t.
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Figure 3. The distribution φ at different times (– – – t = 0, —— t = 0.1 and — · — t = 0.5).
The distribution function for t = 1 coincides with the theoretically expected Maxwellian for T =
300 K.

groups (N = 4). The oscillations seem to be a consequence of the spline approximation
used combined with the strict adherence to the balance equation of momentum and energy.
They do not appear in that case only particle conservation is ensured by the multigroup
equations. Moreover, investigations using ordinary polynomials as basis functions lead to
the same numerical result, apart from the fact that the oscillations do not vanish in the
approach to equilibrium. Using a finer discretization scheme, as given by the excitation
energy �E, would reduce the amplitude of the oscillations, but has the drawback that
neighbouring energy groups decouple. (Inelastic scattering of particles into neighbouring
groups is then impossible.) The evolution of the energy density K is illustrated in figure 5.
Since the initial distribution has more slow particles than the final Maxwellian, the energy
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Figure 4. The distribution φ at different times (– – – t = 0, —— t = 0.1 and — · — t = 0.5) by
using four groups instead of ten (compare figure 3).
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Figure 5. Temporal relaxation of the energy density K.

density increases temporally. The conservation of the particle number which represents a
criterion for the quality of the numerical calculations is fulfilled with high accuracy in our
simulations.

Next, we investigate the diffusion of particles caused by a spatially varying particle
density in the torus. The initially parabolic-shaped particle density n tends to a spatially
constant density, which can be seen in figures 6 and 7. Figure 8 shows that the diffusion is
slowed down if one disregards the self-consistent electric field.

Finally, we study the impact of a harmonic external electric field,Eex = A cos(ωt), which
is switched off at time tE = 40 with A = 0.002 and ω = 2π/19. Figure 9 shows the expected
appearance of a sinusoidal current density in the torus. After switching off the electric field,
the current is strongly slowed down by inelastic collisions of the particles.

By applying stronger electric fields E > 5 kV m−1, we observe negative values for the
distribution function, which means that the P1-approximation is no longer valid. This can be
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Figure 6. Spatio-temporal evolution of the particle density n in a torus.
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Figure 7. The current density J versus the angle θ at several times (—— t = 1, – – – t = 50 and
— · — t = 200) in a torus.
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Figure 8. The temporal evolution of the particle density n at θ = 0 for the cases of regarding
(——) and disregarding (– – –) the self-consistent electric field, respectively.
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Figure 9. The current density at point θ = π/2 versus time t. The harmonic external electric field
is switched off at tE = 40.

repaired by considering higher orders of the PN -approximation, which, however, prolongate
the calculations.

5. Conclusion

This paper treats an extended linear Boltzmann equation governing the distribution function
of charged particles colliding inelastically with resting heavy background particles. By
establishing a multigroup spline P1-approximation, the Boltzmann equation is transformed
into a system of differential equations. It is ensured that these model equations lead to the
correct balance equations for the macroscopic quantities. The system of differential equations
is solved numerically for the geometry of a thin torus by taking into account the self-consistent
electric field and external forces. The numerical experiments show that the validity of the
spline P1-approximation used for the distribution function is limited to weak external forces.
An improvement is possible by using higher-order PN -approximations; however, this extends
the calculations.
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